Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-38136581

RESUMO

Molecular dynamic modeling and various experimental techniques, including multi-angle dynamic light scattering (MADLS), streaming potential, optical waveguide light spectroscopy (OWLS), quartz crystal microbalance with dissipation (QCM), and atomic force microscopy (AFM), were applied to determine the basic physicochemical parameters of fibroblast growth factor 21 in electrolyte solutions. The protein size and shape, cross-section area, dependence of the nominal charge on pH, and isoelectric point of 5.3 were acquired. These data enabled the interpretation of the adsorption kinetics of FGF 21 on bare and macrocation-covered silica investigated by OWLS and QCM. It was confirmed that the protein molecules irreversibly adsorbed on the latter substrate, forming layers with controlled coverage up to 0.8 mg m-2, while their adsorption on bare silica was much smaller. The viability of two cell lines, CHO-K1 and L-929, on both bare and macrocation/FGF 21-covered substrates was also determined. It is postulated that the acquired results can serve as useful reference systems for designing complexes that can extend the half-life of FGF 21 in its active state.


Assuntos
Fatores de Crescimento de Fibroblastos , Simulação de Dinâmica Molecular , Adsorção , Dióxido de Silício/química , Propriedades de Superfície
2.
Int J Biol Macromol ; 247: 125701, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429346

RESUMO

Controlling cellular adhesion is a critical step in the development of biomaterials, and in cell- based biosensing assays. Usually, the adhesivity of cells is tuned by an appropriate biocompatible layer. Here, synthetic poly(diallyldimethylammonium chloride) (PDADMAC), natural chitosan, and heparin (existing in an extracellular matrix) were selected to assembly PDADMAC/heparin and chitosan/heparin films. The physicochemical properties of macroion multilayers were determined by streaming potential measurements (SPM), quartz crystal microbalance (QCM-D), and optical waveguide lightmode spectroscopy (OWLS). The topography of the wet films was imaged using atomic force microscopy (AFM). The adhesion of preosteoblastic cell line MC3T3-E1 on those well-characterized polysaccharide-based multilayers was evaluated using a resonant waveguide grating (RWG) based optical biosensor and digital holographic microscopy. The latter method was engaged to investigate long-term cellular behavior on the fabricated multilayers. (PDADMAC/heparin) films were proved to be the most effective in inducing cellular adhesion. The cell attachment to chitosan/heparin-based multilayers was negligible. It was found that efficient adhesion of the cells occurs onto homogeneous and rigid multilayers (PDADMAC/heparin), whereas the macroion films forming "sponge-like" structures (chitosan/heparin) are less effective, and could be employed when reduced adhesion is needed. Polysaccharide-based multilayers can be considered versatile systems for medical applications. One can postulate that the presented results are relevant not only for modeling studies but also for applied research.


Assuntos
Técnicas Biossensoriais , Quitosana , Quitosana/química , Polissacarídeos/farmacologia , Heparina/farmacologia , Heparina/química , Adesão Celular , Propriedades de Superfície
3.
Biomolecules ; 13(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238712

RESUMO

Despite the plethora of research that exists on recombinant human bone morphogenetic protein-2 and -7 (rhBMP-2 and rhBMP-7) and has been clinically approved, there is still a need to gain information that would allow for their more rational use in bone implantology. The clinical application of supra-physiological dosages of these superactive molecules causes many serious adverse effects. At the cellular level, they play a role in osteogenesis and cellular adhesion, migration, and proliferation around the implant. Therefore, in this work, we investigated the role of the covalent binding of rhBMP-2 and rhBMP-7 separately and in combination with ultrathin multilayers composed of heparin and diazoresin in stem cells. In the first step, we optimized the protein deposition conditions via quartz crystal microbalance (QCM). Then, atomic force microscopy (AFM) and enzyme-linked immunosorbent assay (ELISA) were used to analyze protein-substrate interactions. The effect of the protein binding on the initial cell adhesion, migration, and short-term expression of osteogenesis markers was tested. In the presence of both proteins, cell flattening and adhesion became more prominent, resulting in limited motility. However, the early osteogenic marker expression significantly increased compared to the single protein systems. The presence of single proteins resulted in the elongation of cells, which promoted their migration activity.


Assuntos
Heparina , Fator de Crescimento Transformador beta , Humanos , Heparina/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Compostos Azo/farmacologia , Osteogênese , Proteínas Recombinantes/metabolismo , Diferenciação Celular
4.
Biomolecules ; 13(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37189357

RESUMO

Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Cicatrização , Humanos
5.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012551

RESUMO

Recombinant human bone morphogenetic protein-2 (rhBMP-2) plays a key role in the stem cell response, not only via its influence on osteogenesis, but also on cellular adhesion, migration, and proliferation. However, when applied clinically, its supra-physiological levels cause many adverse effects. Therefore, there is a need to concomitantly retain the biological activity of BMP-2 and reduce its doses. Currently, the most promising strategies involve site-specific and site-directed immobilization of rhBMP-2. This work investigated the covalent and electrostatic binding of rhBMP-2 to ultrathin-multilayers with chondroitin sulfate (CS) or diazoresin (DR) as the topmost layer. Angle-resolved X-ray photoelectron spectroscopy was used to study the exposed chemical groups. The rhBMP-2 binding efficiency and protein state were studied with time-of-flight secondary ion mass spectrometry. Quartz crystal microbalance, atomic force microscopy, and enzyme-linked immunosorbent assay were used to analyze protein-substrate interactions. The effect of the topmost layer was tested on initial cell adhesion and short-term osteogenesis marker expression. The results show the highest expression of selected osteomarkers in cells cultured on the DR-ended layer, while the cellular flattening was rather poor compared to the CS-ended system. rhBMP-2 adhesion was observed only on negatively charged layers. Cell flattening became more prominent in the presence of the protein, even though the osteogenic gene expression decreased.


Assuntos
Proteína Morfogenética Óssea 2 , Células-Tronco Mesenquimais , Proteína Morfogenética Óssea 2/metabolismo , Adesão Celular , Diferenciação Celular , Células Cultivadas , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/farmacologia
6.
Anal Chem ; 94(28): 10234-10244, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35776925

RESUMO

Deposition kinetics of positively charged polymer microparticles, characterized by prolate spheroid shape, at silica and gold sensors was investigated using the quartz microbalance (QCM) technique. Reference measurements were also performed for positively charged polymer particles of spherical shape and the same mass as the spheroids. Primarily, the frequency and bandwidth shifts for various overtones were measured as a function of time. It is shown that the ratio of these signals is close to unity for all overtones. These results were converted to the dependence of the frequency shift on the particle coverage, directly determined by atomic force microscopy and theoretically interpreted in terms of the hydrodynamic model. A quantitative agreement with experiments was attained considering particle slip relative to the ambient oscillating flow. In contrast, the theoretical results pertinent to the rigid contact model proved inadequate. The particle deposition kinetics derived from the QCM method was compared with theoretical modeling performed according to the random sequential adsorption approach. This allowed to assess the feasibility of the QCM technique to furnish proper deposition kinetics for anisotropic particles. It is argued that the hydrodynamic slip effect should be considered in the interpretation of QCM kinetic results acquired for bioparticles, especially viruses.


Assuntos
Hidrodinâmica , Técnicas de Microbalança de Cristal de Quartzo , Cinética , Polímeros , Propriedades de Superfície
7.
J Phys Chem B ; 125(28): 7797-7808, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34253019

RESUMO

The kinetics of lambda carrageenan (λ-car) adsorption/desorption on/from anchoring layers under diffusion- and convection-controlled transport conditions were investigated. The eighth generation of poly(amidoamine) dendrimers and branched polyethyleneimine possessing different shapes and polydispersity indexes were used for anchoring layer formation. Dynamic light scattering, electrophoresis, streaming potential measurements, optical waveguide lightmode spectroscopy, and quartz crystal microbalance were applied to characterize the formation of mono- and bilayers. The unique combination of the employed techniques enabled detailed insights into the mechanism of the λ-car adsorption mainly controlled by electrostatic interactions. The results show that the macroion adsorption efficiency is strictly correlated with the value of the final zeta potentials of the anchoring layers, the transport type, and the initial bulk concentration of the macroions. The type of the macroion forming the anchoring layer had a minor impact on the kinetics of λ-car adsorption. Besides significance to basic science, the results presented in this paper can be used for the development of biocompatible and stable macroion multilayers of well-defined electrokinetic properties and structure.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Carragenina , Cinética , Propriedades de Superfície
8.
Artigo em Inglês | MEDLINE | ID: mdl-34066515

RESUMO

Adsorption kinetics of myoglobin on silica was investigated using the quartz crystal microbalance (QCM) and the optical waveguide light-mode spectroscopy (OWLS). Measurements were carried out for the NaCl concentration of 0.01 M and 0.15 M. A quantitative analysis of the kinetic adsorption and desorption runs acquired from QCM allowed to determine the maximum coverage of irreversibly bound myoglobin molecules. At a pH of 3.5-4 this was equal to 0.60 mg m-2 and 1.3 mg m-2 for a NaCl concentration of 0.01 M and 0.15 M, respectively, which agrees with the OWLS measurements. The latter value corresponds to the closely packed monolayer of molecules predicted from the random sequential adsorption approach. The fraction of reversibly bound protein molecules and their biding energy were also determined. It is observed that at larger pHs, the myoglobin adsorption kinetics was much slower. This behavior was attributed to the vanishing net charge that decreased the binding energy of molecules with the substrate. These results can be exploited to develop procedures for preparing myoglobin layers at silica substrates of well-controlled coverage useful for biosensing purposes.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício , Adsorção , Concentração de Íons de Hidrogênio , Mioglobina , Análise Espectral , Propriedades de Superfície
9.
Colloids Surf B Biointerfaces ; 198: 111436, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33234411

RESUMO

Adsorption kinetics of myoglobin molecules on mica and silica was studied using the atomic force microscopy (AFM), the colloid enhancement and the quartz microbalance (QCM) methods. Measurements were carried out for the NaCl concentration of 0.01 and 0.15 M as a function of pH comprising pH 7.4 stabilized by the PBS buffer. The electrophoretic mobility measurements enabled to derive the molecules zeta potential as a function of pH. The isoelectric point appearing at pH 5, is lower than that predicted from the theoretical calculations of the nominal dissociation charge. The AFM investigations confirmed that myoglobin molecules irreversibly adsorb at pH 3.5 yielding well-defined layers of single molecules. These layers were characterized using the colloid enhancement method involving polymer microparticles for pH range 3-9. The microparticle deposition kinetics was adequately interpreted in terms of a hybrid random sequential adsorption model. It is confirmed that the myoglobin layers exhibit a negligible zeta potential at pH equal to 5 in accordance with the electrophoretic mobility measurements. Analogous adsorption kinetic measurements were performed for the silica substrate using QCM and AFM. It is observed that myoglobin molecules irreversibly adsorb at pH 3.5 forming stable layers of single molecules. On the other hand, its adsorption kinetics at larger pHs was much slower exhibiting a poorly defined maximum coverage. This was attributed to aggregation of the myoglobin solutions due to their vanishing charge. The kinetic QCM runs were adequately interpreted in terms of a theoretical model combining the Smoluchowski aggregation theory with the convective diffusion mass transfer theory.


Assuntos
Mioglobina , Dióxido de Silício , Adsorção , Silicatos de Alumínio , Concentração de Íons de Hidrogênio , Cinética , Eletricidade Estática , Propriedades de Superfície
10.
Langmuir ; 35(7): 2639-2648, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30673280

RESUMO

Adsorption kinetics of human serum albumin (HSA) on silica substrates was studied using optical waveguide lightmode spectroscopy (OWLS) and quartz microbalance (QCM) techniques. Measurements were performed at pH 3.5, 5.6, and 7.4 for various bulk suspension concentrations and ionic strengths. The diffusion coefficient measurements showed that for pH 3.5 the HSA molecules are stable for NaCl concentrations from 10-3 to 0.15 M. This allowed us to precisely determine the mass transfer rate coefficients for the OWLS and QCM cells. The experimental data were adequately interpreted in terms of a hybrid random sequential adsorption model. The OWLS maximum coverage of HSA at pH 3.5, which is equal to 1.3 mg m-2, agrees with the QCM result and with previous results derived from streaming potential measurements. Thus, the results obtained at pH 3.5 served as reference data for the analysis of adsorption kinetics at higher pHs. In this way, it was confirmed that the adsorption kinetics of HSA molecules at pH 5.6 and 7.4 was considerably slower than at pH 3.5. This effect was attributed to aggregation of HSA solutions and interpreted in terms of a theoretical model combining the Smoluchowski aggregation theory with the convective diffusion mass transfer theory. New analytical equations were derived that can be used for the interpretation of other protein adsorption from unstable solutions.


Assuntos
Albumina Sérica Humana/química , Dióxido de Silício/química , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Cinética , Estabilidade Proteica/efeitos dos fármacos , Técnicas de Microbalança de Cristal de Quartzo , Cloreto de Sódio/química , Análise Espectral
11.
J Colloid Interface Sci ; 530: 631-641, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30005240

RESUMO

Adsorption kinetics of human serum albumin (HSA) at a gold substrate was studied using the quartz microbalance (QCM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Measurements were performed at pH 3.5 for various bulk suspension concentrations and ionic strengths. The QCM experimental data were compared with the dry coverage of HSA derived from AFM and from the solution of the mass transfer equation acquired using a hybrid random sequential adsorption model. In this way, the water factor and the dynamic hydration function for HSA monolayers were quantitatively evaluated as a function of dry coverage for various ionic strengths. A comparison of these results with previously known for a silica sensor confirmed that the QCM kinetic measurements are sensitive to the roughness of the sensor characterized in terms of the rms parameter. For the more rough gold sensor (rms = 2.5 nm, average surface feature size 6 nm) the QCM mass transfer rate constant was 2.6 times lower than for the silica sensor characterized by rms = 0.86 nm. This gives for the gold sensor the apparent water factor equal to one and zero hydration function. Moreover, the hydration function increased for larger HSA coverage and was dependent on ionic strength in contrast to the silica substrate. This unexpected behavior was interpreted in terms of the buoyancy effect where the HSA molecules adsorbing in cavities existing at rough surfaces replace the stagnant (hydrodynamically bound) water. Hence, these results confirm that the sensor roughness of the size comparable with protein molecule dimensions exerts a decisive influence on their adsorption kinetic derived from QCM measurements.


Assuntos
Ouro/química , Albumina Sérica Humana/química , Adsorção , Humanos , Cinética , Microscopia de Força Atômica , Modelos Moleculares , Concentração Osmolar , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície , Água/química
12.
Colloids Surf B Biointerfaces ; 167: 377-384, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705664

RESUMO

Adsorption kinetics of human serum albumin (HSA) at a silica substrate was studied using the QCM-D and AFM methods. Measurements were performed at pH 3.5 for various bulk suspension concentrations and ionic strengths. The QCM experimental data were compared with the dry coverage of HSA derived from AFM and from the solution of the mass transfer equation. In this way, the dynamic hydration functions and water factors of HSA monolayers were quantitatively evaluated as a function of dry coverage for various ionic strengths. Using the hydration functions, the HSA adsorption runs derived from QCM-D measurements were converted to the dry coverage vs. the time relationships. In this way, the maximum coverage of irreversibly bound HSA molecules was determined. It was equal to 0.35 and 1.4 mg m-2 for NaCl concentration of 0.001 and 0.15 M, respectively. These results agree with previous experimental data derived by streaming potential measurements for mica and with theoretical modeling. Therefore, the side-on mechanism of HSA adsorption at silica sensor at pH 3.5 was confirmed. Also, a quantitative analysis of the desorption runs allowed one to calculate the binding energy of the reversibly bound HSA fraction. Beside significance to basic science, these results enable to develop a robust technique of preparing HSA monolayers at silica sensor of well-controlled coverage and molecule orientation.


Assuntos
Albumina Sérica Humana/química , Dióxido de Silício/química , Termodinâmica , Água/química , Adsorção , Algoritmos , Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Força Atômica , Concentração Osmolar , Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício/análise , Propriedades de Superfície
13.
Chemistry ; 23(47): 11239-11243, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28644908

RESUMO

Surface-grafted polymer brushes of novel ladder-like architecture were proposed for inducing ordering of chromophores embedded therein. The brushes with acetylene side groups were obtained by surface-initiated photoiniferter-mediated polymerization. The acetylene moieties reacted then through a "click" process with an axially azide-bifunctionalized silicon phthalocyanine bridging the neighboring chains that inherently adopt extended conformations in dense brushes. FTIR, quartz crystal microbalance, and atomic force microscopy were used to study formation and structure of the photoactive brushes varying in grafting densities. Importantly, photophysical properties of the chromophores were virtually unaffected upon embedding them into the brushes, as evidenced by UV/Vis absorption and emission spectroscopy. Owing to the unique ordering of the chromophores, the proposed method may open new opportunities for the fabrication of light-harvesting systems suitable for photovoltaic or sensing applications.


Assuntos
Polímeros/química , Azidas/química , Química Click , Indóis/química , Microscopia de Força Atômica , Compostos de Organossilício/química , Técnicas de Microbalança de Cristal de Quartzo , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Colloid Interface Sci ; 362(1): 180-7, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21757201

RESUMO

Mesoporous TiO(2) nanocontainers (NCs) covered with polyelectrolyte multilayers were adsorbed on self-assembled monolayer (SAM) modified gold substrates at different values of pH and ionic strength. The adsorption process was followed in situ by means of a quartz crystal microbalance (QCM) and the morphology of the adsorbate was investigated by means of FE-SEM images taken of the substrates after each adsorption process. Deposition could be achieved if either the particles and the surface had opposite charge, or if the salt concentration was sufficiently high, reducing the repulsion between the spheres and the surface. In the latter case the adsorption kinetics could be explained in the context of the DLVO-theory. Using conditions of like charges, one has a means to control the speed of deposition by means of ionic strength. However, interparticle aggregation and cluster deposition on the surface were observed at high ionic strength. Such conditions have to be avoided to obtain a uniform deposition of separated nanocontainers on the surface.

16.
Anal Chem ; 82(6): 2237-42, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20166672

RESUMO

By specifically binding derivatized colloidal particles and physisorbing nonderivatized particles to the surface of a quartz crystal microbalance (QCM), we have observed positive shifts of frequency, Deltaf, in contrast to the negative frequency shifts typically found in adsorption experiments. Evidently, the Sauerbrey relation does not apply to this situation. A comparison of frequencies shifts and bandwidths on different overtones reveals a coupled resonance: at low overtones, Deltaf is negative, whereas it is positive at high overtones, with maximal resonance bandwidth observed at the crossover point. As predicted by the Dybwad model, the spheres bound to the surface form resonating systems on their own. A composite resonator is formed, consisting of a large crystal with resonance frequency omega and the adsorbed spheres with resonance frequency omega(S). In the case in which the resonance frequency of the small spheres (firmly attached to crystal), omega(S), is higher than the resonance frequency of the crystal, omega, Deltaf of the composite system is negative (leading to the Sauerbrey limit). In the opposite limit (that is, in the case of large adsorbed particles bound to the sensor surface via a sufficiently weak bridge) Deltaf is positive. Such a behavior is known from sphere-plate contacts in the dry state. Finite element calculation demonstrates that this phenomena is also plausible in liquid phase media, with Deltaf critically dependent on the strength of the sphere-plate contact. Operated in this mode, the QCM most likely probes the contact strength, rather than the mass of the particle.


Assuntos
Coloides/química , Quartzo/química , Adsorção , Magnetismo , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...